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VERIFICATION OF SEQUENTIAL PROGRAMS:
TEMPORAL AXIOMATIZATION

by

ZOITAR MANNA

Computer Science Dept. Applied Mathematics Dept.
Stanford University The Weizmann Institute
Stanford, CA Rechovot, Israel

Abstract

This is one in a scries of reports describing the application of temporal logic to the specification
and verification of computer programs. PR

L. b s ra N
L N ol .5 s S

/In garlier reports, wé introduced t{mporal' logic as a tool for reasoning about concurrent
programs and specilying their propertics [MP]] and presented proof principles for establishing
these propertics ([MP2]).~ Here, we restrict oursclves Lo Heterministic, sequential programs. We
presenta proof system in which properties of such programs, expressed as temporal formulas, can
be proved formally.

~ Our-proof system consists of three parts: a general part elaboratling the properties of temporal
logic, a domain part giving an axiomatic descriplion of the data domain, and a program part giving

an axiomalic description of the program under ce' sideration.
5 steatehk fhrouak the o .
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We illastrate the use of the proof sysiem by giving Lwo alternative formal proofs of the total
correebness of a simple program.

"This paper appears in the Theoretical Foundations of Programming Mcthodology (I'. .. Baucer, E.
W. Dijkstra, and C. A. R. Hoare, eds.), NATO Scientific Serics, D. Reidel Pub. Co., Holland, 1981.

This research was supported in part by the National Science Foundation under grants MCS80-
06930, in part by the Office of Naval Rescarch under Contract N0G014-76-C-0687, and in part by
the United States Air Force Ollice of Scientific Research under Contract AIFOSR-81-0014.
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1. INTRODUCTION

Temporal logic is a modal logic in which we imposc special restrictions on the models of
interpretation ([PRI], [RU}{PNUJ,[GPSS], [MP’1]). A universe for temporal logic consists of a
collection of states (worlds). A slate s’ is accessible from a state s il through development in time,
s can change into 8’. We concentrate on histories of development which are lincar and discrete.
Thus, the models of temporal logic consist of w-sequences, t.e., infinite sequences of the form o =
30,81, -... In such a sequence, 8; is accessible from s; if ¢ < j. On these states we define an
tmmediate accessibility relation p which is required to be a function. That means that every state s
has exaclly one other state s’ such that p(s, s'). This corresponds to our intuition that in a discrete
time model each instant has exactlly one immediale successor. the transitive reflexive closure of p,
R = p*, is the accessibility relation; inluitively, R(s,s’) holds when s is either identical to 8 or
lics in the future of s.

We [irst describe the temporal language we are going to use. This language is designed specially
for the application we have in mind, namely reasoning about programs, and is nol necessarily the
most general termporal language possible.

The language uses a set of basic symbols consisting of individual variables and constants, and
proposition, function and predicate symbols. The set is partitioned into two subsets: global and
local symbols. The global symbols have a uniform interpretation over the complete universe and
do not change their values or meanings from onc state to another. The local symbols, on the
other hand, may assume different meanings and values in different states of the universe. For our
purpose, the only local symbols that interesl us are local individual variables. We will have global
symbols ol all types.

We use the regular sct of boolean conncelives: A, V, 2, =, and ~ together with the cquality
operator = and the first-order quantifiers V and 3. This set is referred to as the classical operators.
The quantifiers V and 3 are applicd only to global individual variables.

The modal operators used are: O, O, O, and U, which are called respectively the always,
sometime, nezt and until operators. The first three operators are unary while the U operator is
binary. We use the nezt operator O in two different ways - as a temporal operator applied to
formulas and as a temporal operator applied to terms.

A model (I, a,0) for our language consists of a (global) interpretation I, a (global) assignment -

a and a scquence of states o.

e The interpretation I specifies a nonemptly domain D and assigns concr2te e'ements,
functions and predicates to the (global) individual constants, function . icate
symbols,

¢ The assignment « assigns a value over Lhe appropriate domain to each of the global lree
individual variables.

o The sequence 0 = 8¢, 81, ... is an infinite sequence of stales. Fach state s; assigns values
to the local free individual variables and propositions.

[or a sequence

O = 80,81, ..

e o A TN S~ e WP 4TI T I R W T I PR e vy v .-

PG ETey




we denote by
o® = 8;,8,41, ...

the s-truncated suflix of o.

Given a tcmporal formula w, we present below an inductive definition of the truth value of w
in a model (I, a,0). The valuc of a subformula or term 7 under (I, «, ¢) is denoted by Tlg , I being
implicitly assumed.

Consider first the evaluation of terms:

¢ For a local individual variable or local proposition y:

ylg = Yso»
t.e., the value assigned to y in 8g, the first state of o.

o For a global individual variable or global proposilion u:
u| = afu, 3

i.e., the value assigned to u by a.

¢ l'or an individual constant the evaluation is given by I:

& = Ile).

e For a k-ary function f:

f(th . '-’tk)lg = Ilf](tllgt ---)tklg)y

i.¢., the value is given by the application of the interpreted function I{f] to the values
of t1, ...,tx evaluated in the environment (I, a, o).

e For a term &:

o tlg = tlg(‘) ’

i.e., the valuc of Otin o = 8¢, 8y, . .. is given by the valuc of ¢ in Lhe shilted scquence
(1) = ' '
o = B1,89y .0
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Consider now the evaluation of formulas:

o For a k-ary predicate p (including equality): L — B
. By.._..‘.._,u... [P ——
p(ﬁ, ""tk)lg = I[P](tl'g; "'1tk|g)' . _Pigtribut,i_::n/ )
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Here again, we evaluate the arguments in the environment and then test 7{p] on them.

¢ For a disjunction:

(w1 ng)lg‘ = true iff wllg = {rue or w2|g = true.

¢ For a negation:

(~w)|§ = true if w|§ = false.

e For a next-time application:
a
Ouw|¥ = 'wla(l)-

Thus O w means: w will be true in the nezt instant -- read “next w”.

e For an all-times application:
a . «
Elw|0 = true ff for every k > 0, wla(") = true,

i.e., w is true for all suflix sequences of ¢. Thus [Jw means: w is true for all future
instants (including the present) - read “always w” or “henceforth w”.

e Ior a some-time application:

<>w|g = true iff there exists a k > 0 such that ’w|:(k) = true,

f.e., w is true on at least one sufflix of ¢. Thus O w means: w will be true for some
future instant (possibly the present) - read “sometimes w” or “eventually w”.

¢ For an until application:

w Uwy|§ = true iff for some k > 0, w2|:(k) = true and

forall 4,0 <1 <k, wl|;(.') = true.

Thus w;Uw, means: there is a futurc instant in which wg holds, and such that until

that instant w, continuously holds  read “w; unlil w,”{{I{AM], [CPEC)).

e For a universal quantification:

a . ' a
(Vuw)|$ = true iff for every d € D, "’Ia = true,
where &' = a o [u + d] is the assignment obtained from a by assigning d to u.
e For an existential quantification:
a . a
(Ju.w)|§ = true if for some d € D, w|§ = true,

where o/ = a o [u « d].
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} A formula w is valid if it is true in every model (I, a,0).

i _ Having defined valid formulas, we naturally look for a deductive system. In such a sysltem
- we take some of the valid formulas as basic axioms and provide a set of sound inference rules by
which we hope to be able to prove the other valid formulas as theorems. In order to denote the
fact that a formula w is a theorem derivable in our deduclive system we will write + w. This will
be the case if w is an axiom or is derivable from the axioms by a proof using the inference rules of
R . the system.

L - We partition our deductive system into a general paert dealing with the general temporal :
‘ properties of discrete linear sequences, a domain part which gives an axiomatic description of the
necessary knowledge about the domain, and a program part which gives an axiomatic description 5
of a particular program.

= We start with the general part, describing first the axiomatic system for propositional temporal i
/1 logic in which we do not admit predicates or quantification. We treat first the “classical” modal
operators 0 and < (the modal system), and later add the special operators O and U (the temporal
system).

= : 2. THE O (“ALWAYS”) AND © (“SOMETIME”) OPERATORS

Axioms:

' Al. + ~Ow=0~w
- A2. v O(w; D2wg) 2 (Ow, D> Owy)
A3. + OQuwow

A + DwOoO0Ow

] Axiom Al defines O as the dual of [J; it states that at all times w is false {ff it is not the case
that sometime w holds. Axiom A2 statcs that il universally w; implics wq then if at all times w,
is true then 8o is wg. Axiom A3 establishes the present as part of the future by stating that if w
is true at all future times it must be true of the present. Axiom A4 states that if w holds in the
future, it holds in the fulurc of the future. :
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Inference rules:

R1. Il w is an instance of a propositional tautology then + w
(Propositional Tautology — PT)

R2. If +wyDwy and F w; then F wy
(Modus Ponens - MP)

R3. If Fw then F Ow

(O Insertion - O 1)

All these rules are sound. The soundness of R1 and R2 is obvious. Note that in #1 we also include
modal instances of lautologies; we may substitute an arbitrary modal formula for a proposition
letter in obtaining an instance. For example Ow D Ow is a modal instance of the tautology p O p.
To justify I3, we recall Lthat validily of w means that w is true in all models, hence Ow is also
valid.

This system provides a logical basis for “propositional” modal reasoning. In Modal Logic
circles, this system is known as S4 (sec, e.g., [HC]). This system constrains R to be reflexive (A3)
and transitive (A4).

Before demonstrating some theorems that can be proved in this system, we develop several
useful derived rules:

Propositional Reasoning — PR

FlwiAwgA ... Awp) D w
F wy, b wg ...,and + w,

Fw

The notation above is used to describe inference rules. It has the general form
Foy,, Fp2 o0y F om
FY

and means that if we have already proved @y, ... 1, (the assumntions of the rule), we are allowed
by this rule to infer 9 (the conclusion of the rule).

proof:
The rule follows from the propositional tautology (Rule R1)
F [(wiAwaA ... Awa)dw] 2 [wyD(wed(...(waDw)...))]

by applying MP (Rule R2) n + I times. (]

Whenever we apply this derived rule without indicating the antecedent

F (wiAws... /\w,‘)'_')w,'




L-‘ k]
. ’ it means that this formula is simply an instance of a propositional tautology.
i 00 Rules
j;‘ .l'wl:)‘llIg F wy = wy
. @ ——— () ———
f F Ow; o Ow; F Dw =0w;
- . proof of (a):
' ' 1. F w D w; given 1
;‘ 2. + Dfw; D ws) by O1 é
~ 3. + O(w; D wg) D (Ow, > Owy) by A2 i
R 4. + Ow, > Owa by 2, 3, and M P i
§.1 Rule (b) then follows by propositional reasoning, since
. [(wy 2 wa) A (w2 2 wy)] = (w1 = ws) ]
' is a tautology. ]
» © © Rules
i Fwyp D wy Fwy = wy
- (a) ————— (b) ——
' F Ow; D Qwe FOw =Qws
proof of (a):
3 1. ¥ wy O wy given
1 2. b ~wy D ~wy by PR
3. + O~wy O O~wy by OO
4. F ~Quwy 2 ~Ow by Al and PR
5 F QOwy D Qwy by PR

Rule (b) then follows by propositional reasoning. [ |

s eem. - rvemsens

Equivalence Rule - ER

Let w’ be the result of replacing an occurrence of a subformula vy
in w by vy. Then

F v = vy

Fw=w

proof:

By induction on the structure of w.




. Case: wis v;. Then w'is v and + vy = vy implies + w = »'.

Case: w is of the form ~u. We assume that F v, = vy implies  u = «' . Then by
| propositional reasoning  ~u= ~u', te., r w=w'.

! Case: w is of the form uy V us. We assume that if F vy = ve , then F uy = u} and
F ug = uh . Then by propositional reasoning F (uy V ug) = (v} Vuy), ie., F w=w'

The cases where w is of form u; A ug, u; D ug, ete. are similar.

Case: w is of the form Ou. We assume that if + v; = vy, then + u = «' . By the O0O-rule,
FOu=0v, te, Fw=w.

[Ty

The case in which w is of the form © u is treated similarly, using the O O-rule. 1

C et R e mdar

i Some theorems that can be derived in the system are:

k- Tl. FwDQw

- proof: ;
= 1. - (O~w) D ~w by A3 Cl
2. + w D (~0O~w) by PR :
). 33 F wd Ow by Al and PR i

The theorem implies (by M P)

At i O e

O Insertion - O [

t Fow

F Ow

We can derive the converse of axiom A4 as stated in the modal systemn, and thus prove:

| T2. + Dw = OO0w

o proof:
1. + Ow > O0w by A4
2. - Owow by A3
3. + O0Ow > Ow by OO
4. + ODw = O0Ow by 1, 3, and PR
¢ ]
T3. + Suw = O%w
proof: . - |
1.




- 2. b+ ~0~w = ~00~w by PR
I - 3. + QOw ~0O~%w , by Al and ER
‘ 4. F Quw OCw : by Al and PR

Because of these last two thcorems we can collapse any string of consecutive identical modalities
suchas [ --- Oor © -.- ¢ into a single modality of the same type.

Note that to derive line 3 from line 2 we could not use propositional reasoning (PR), but we
had to use the equivalence rule (ER). The subformula O ~ w in

2. o= ~00~w

F

was replaced by the equivalent subformula ~ ¢ w to obtain

3. + ... = ~0~Qw.

But this replacement is inside O and thus cannot be justified by propositional reasoning. The re-
placement done on the left-hand side of the equivalence can be justified by propositional reasoning.

T4, F (O~w) = (~DOuw)

proof:

(~~w) = w by PT
(O~~w) = Ow by OO
(~0~w) = 0w by Al and PR
(¢ ~w) = (~0Ow) by PR

N
TTTT

T5. D(w. D'Iﬂz) 2 (Owl 2 <>1D2)

proof:

1. F (w. D ‘wz) = (~w2 2 ~w|) by PT
2. F D(wl ) ’w2) = D(NWQ ) ~101) by OO
3. + O(~wz D ~wy) O (O~we D> O~w,) by A2
4. + (O~wezD0~w) = (~Qwe D ~Qw) by Al and PR
! 5. F (~Qwed~Qw;) = (Qwy D Quwy) by PT
6. + DOlw;dws) 2 (Ow; D Owy) hy 2, 3,4, 5, and PR

T6. + DO(wy Awe) = (Owy AOwy)
proof:

1. + (w1 Awg) D w by PT |
‘ 2. F D(wl sz) 2 Ow by OO i
' ’ 3. F (wl sz) D we by PT '
4. + D(wy Awg) O Owy by OO
5. F O(w; Awg) O (Owy AQwg) by 2, 4, and PR
6.

wy D (wg D wy A wg) ' by PT




7. + Ow; D O(wg 3 (wy A wz)) © by OO
8. F O(wz D (w1 Awz)) DO (Owy D Of{w; Awz)) by A2
= 9. + Dw; D> (Owy D O(w A wg)) by 7, 8, and PR
. 10. + (Ow, AOwg) O O(wy A wg) by PR
‘\ 1. + DOw; Awz) = (Ow; ADwy) by 5, 10, and PR

T7. F 0(w1V'w2) = (Owl VO'(I)z)

K- proof:

1. + O(~wi A~wy) = (O~w; AO~wy) by T6
=~ 2. F O~(wVws) = ~(~0O~w; V~0O~uws) by ER
g 3. F ~O(wVwy) = ~(Owy VOws) by Al and PR
4 4. F Ow Vwy) = (Qw VvV Ows) by PR

Note that because of the universal character of [ it can be distributed over A (Theorem 7°6), while i
¢, which is of existential character can be distributed over V (Theorem T'7). !

T8. + O(wy Aws) D (Qwy AOws) 1

".'! proof:

) L F O(wi Awz) D Oy by PT and © ¢
P 2. F OlwiAwz) D Cwy » by PT and © ¢
K, 3. F Owi Awz) D (Cuwi A Owy) by L, 2, and PR

T9. + (D'leD’U)2) o] EI(wIsz)

proof:
1. r Ow, > D(wl \ ’UI2) by PT and OO
2. + Owz D Cl(wl V’U)z) by T and OO
3. + (OwVvOws) > O(wy Vwy) by 1, 2, and PR

T10. + (Ow A Qwz) 3 O(w; A ws)

proof.
1. F O(w D ~wy) D (Qwy > O~wy) by A2
2. F D~(w| /\’w'g) ) N(D wy A ~D~w2) by ER
3. + ~O(wi Awg) O ~(Ow A Ows) by Al and PR ]
4. F (Owi AQwz) O Owy Awsg) by PR

another proof (without using KR):

I. + w; D (wz 2 (‘w[ A'UJ2)) _ by PT
2. + Ow, D El(wg D (w, /\1.U2)) . by OO

10 f‘
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3. F El(wg D (w, /\wz)) 2 (<> wz D Ofwy /\‘wz))

-
T

. Qw; D (O‘U)2 o) 0(101 /\WQ))
5. F (le/\O'lDz) 2 O(UJ[/\‘WQ)

by T5

by 2, 3, and PR

by PR

The following derived rules correspond to proof rules existing in most axiomatic verification

systems:
Consequence Rules - © Q and OOQ
F wyp D we F wy D we
F wg D Ows F we D Ows
- wg D wy F w3 D wy
Fw D Owy Fw; D Owy
proof of © Q:
1. F wy D wy given
2. F wg D Quwy given
3. F w3y D wy given
4. F QOwz O Ow, by 3 and © O
5 F w; D Owy by 1, 2, 4, and PR
The O Q rule is proved similarly by the 00 O-rule.
Concatenation Rule - O Cand OC
Fw D Qwy Fw; D Owsg
Fwy D Ows F we D Owy
F w2 Ow; Fwg D DOw;s
proof of O C:
1. + w D O wy given
2. F w2 O Qwy given
3. + CQwy D COwy by 2 and © ¢
4. F Quw; D Ow; by T3 and PR
5 F wy 2 Quy by 1, 4, and PR

The OC rule is proved similarly by the O0O-rule.
11
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3. THE O (“NEXT”) AND U (“UNTIL”) OPERATORS

e

‘ 1 Axioms:

W.-,; Cl. F ~%w = 0O~w

‘ C2. F O(wy D wg) O (Ow,; D Owy)
C3. v Ow o w

“ Ci + O~w = ~Ow

C5. + Ow; D wg) O (Owy D Ows)

j C6. l— Ow > Ow

! C7. +» Dw > O0w

C8. + D(w > Ow) O (w>d0Ow)

. C9. F wilws = [wg V (wi AO(w U ws))]
| Cl0. +r wyUws D Owsy.

Axioms C't — C3 are the same as A1 — A3 in the modal system.

Axiom C4 cstablishes O as seli-duai. Consequ~ntly it impiies that the nexi instant exists and
is unique, and restricts our models Lo linear sequences (no branching).

Axiom C5 is the analoguc of C2 for the O operator. Axiom CB6 stales that the next instant
is one of the reachable states, t.e., it is also part of the future. Axiom C7 is a weaker version of
A4, F Ow D OO w, and can be used together with C8 to prove A4 as a theorem in this system.
Axiom €8 is the “computational induction” axiom; it states that if a property is inherited over
one step trangitions, it is invariant over any suffix sequence whose first state satisfics w. Axiom C9
defines the until operator by distribul’ng its effect into what is implied for the present and what
is implicd for the next instant. Axiom C10 simnply states that “w; until wg” implies that wq will
evenlually happen.

12




Inference rules:

R1. If wis an instance of a propositional tautology then - w
(Propositional Tautology — PT)

R2. I' v wyDwy and F w; then F ws
(Modus Ponens - M P)

R3. If +w then + Ow

(O Insertion - A1)

These rules are identical to R1 — /23 of the modal system. Since axioms C1, C2 and C3 are
identical to axioms Al, A2 and A3 and we will show later that axiom A4 is derivable in this system,
it follows that all the derived rules of inference and the theorems in the modal system are also
derivable in this system. Ilere are scveral additional derived rules:

O Insertion - O

Fow
F Ow
proof:
1. +F w given
2. + Ow by 017
3. + Ow by C6 and MP
O O Rules
F w; D ws F owy = wy
(a) (b)
+ Ow; 20w, F Quw;=O0uw,
proof of (a):
{. F w; Dwg given
2. + O(wy D wg) by O1I
3. + Ow 20w, ‘ by C5 and MP

Rule (b) follows by propositional rcasoning.

Computational Induction Rule - CI

F w2 Ow

F wOOw

13




proof:

& 1. + w > Ouw given
B 2. + Ow>Ow) by O
£ 3. v Ow>Ow) D> (w>0Ow) by C8
; 4. F w o QOuw by 2, 3, and MP

R Backward Induction Rule — BI :

2

‘i s b Quwdw

proof:

N 1. + Qw > w ' given
i 2. + ~w 2 ~Ow ' by PR

A 3. F ~w D O~w by C4 and PR

s 4. + ~w D Q~w by CI

3 5. F ~w D~C%w by C1 and PR

6. + Qw D> w by PR .

O Consequence Rule - OQ

f F wy O wy

. t wg O Ows

. F w3 D wy

F wy D Ow,
proof:
; 1. + w; D wy given

- 2. F wy D Ows given

3. F w3 D wy given
4. F Owz D Owy by OO
5. F w; D Owy by 1, 2, 4, and PR

Note that we do not have a O conecalenation rule.
A simple theorem of this system is:
: Til. + OQw 2 Ow
proof:

1. + (O~w) D (O~w) ' _ by C6
2. + (~O~w) D (~DO~w) by PR

14




e i L -m _‘” - V*“-"“M - ,' i 3 A . » - A i o Rty 7. T v T—— 73

3. + Ow D Ow by C1, C4, and PR

T12. +» Ow > O0Ow

proof:
1. + Ow > OQ0w by C7
2. v+ Ow> 00w by CI

This is the “missing” axiom A4. We have alf axioms and rules of the previous system, thercfore
we can deduce all theorems and derived rules of the modal system.

The [ollowing special rule is very useful in proving unt:il theorems:

Nezxt to Present Rule - NP

F (Ow; = Owp) O (wy = wy)
Fow D Olwr A ws)
F w2 3 Ofwy A ws)

F ow = wy

proof:
1. + wy D Owy Aws) given
2. + wy 23 Ofw Aws) given
3.+ (wyVwz) 3 Ow; Awsg) by 1, 2, and PR
4. + (wiAwz) DO (w( = wp) by PT
5. F Ow Awp) 3 Ofwy = wy) by ¢ 0
6. + Ofwi =wz) DO (w1 = wy) given
7. F Olwy =wy) O (w = wg) by BI
8.  F (wVwz) DO (wy = wy) by 3, 5, 7, and PR
9. F w = uy by PR

We cxtend now the Equivalence Rule (ER) to handle the O and U operators.

Egusvalence Ruk - ER

Let w' be the result of replacing an occurrence of a subformula v,
in w by va. Then

F v = v

Fuw=aw

15




proof:

As before, the proof is by induction on the structure of w. The cases where w is w; or of form
~u, 41 V ug, u; D ug, cte. are treated as in the ER derived rule above.

Case: w is of form Ou. We assume that if + v = vy, then  u = /. Then by the O O-rule
FOu=0d,te b w=w'.

The cases where w is of form Ou and © w are proved similarly by the O DO-rule and © ©-rule,
respectively. The case that w is of form u; U uy needs a more detailed proof.

Case: w is of form uy Y ug.  We assume that if F vy = vy, then + u; = uf and F uy = uj.
We attempt to use the Next Lo Presenl derived rule (VN P) taking w; to be u; U ug and ws to be
u U ub.

L+ ouy = o induction hypothesis
2. F up = uh induction hypothesis
3. F wlug = [ugV (v A Ofug U uz))) by C9
4. F Uy, = [uhv (e A O, Uub)) by C9
5. F uwilUuh = [ueV (w1 A Oy Uuj)) by 1, 2, 4, and PR
6. F+ [OfuyUug) = Ouy Uuh)] D [(ui U up) = (u) Uup)

by 3, 5, and PR
7. + uwlus D Oug by C10
8 + uz 3 [(uUug) A (v} Uup)] by 3, 5, and PR
9. F u lUuz O Of(ug Uuz) A (u) U ub)] by 7, 8, and O Q
10. + wjUup O Ouh by C10
N, r Cuy = Ouj by 2 and & ¢
12 F wjluy O Qug by 10, 11, and PR
13 F w\Uuy O Of(ur Uug) A (u) U ub)] by 8, 12, and O Q
4.+ (uy Uup) = (v} Uup) by 6,9, 13, and NP

This concludes the proof. §

“next” theorems

T13. r O(w Awg) = (Ow A Ows)

proof:
1 + O(‘II)[ 2 ~1l)2) o) (O wy D O~w2) by C5
2 - ~(Ow| 2 O~w2) D ~O('w1 D N‘U)g) by PR
3. ¥ ~(Owid>~O0mwp) O O~(wy D ~wy) by C4 and PR
4. F (Ow, AOwsy) > Owy A wy) by ER
5. (wl /\102) D wy by PT
16
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T14.

proof:

T15.

proof:

T16.

proof:

T17.

proof:

10.

© N>

TTTT

o O('wl/\’U)g) = (OwI/\Owg)

Ofw; Awz) D Ow, by OO
(wl /\‘lU2) D we by PT
O(w; Awz) D Ows by OO
O(wy Awz) O (Owi A O wg) by 6, 8, and PR

by 4, 9, and PR

Ofuwy Vwz) = (OwiVOw)

Al e

TTTTT

O(~w1 A N‘U)z) = (O ~w1) A (O ~w2) by T'13
O(~ws A ~w3) = (~Ow)A(~ O wa) by C4 and PR
O ~(w; Vwz) = {~Ow)A(~Ous) by ER and PR
~O(wy Vwz) = ~(Ow; VOuw) by C4 and PR
O(wl VvV 'UIQ) = (Owl \" sz) . by PR

O(wy Dwp) = (Owy D Owy)

1.
2.
3.

F
o
+

O(~w, Vwz) = (O~w)V(Ows) by T14
O(~w V wz) = (~Ow)V(Ows) by C4 and PR
O(w; D wg) = (Owy D Ows) by ER and PR

O(ws = w3) = (Owi = Owy)

1. F
2.
3. +
O0w
1.
2. F
3. +
4,
5 F
6. P
7. F
8. F

[O(wy 2 wa) A O(wz D wy)] = [(Owr D O w;) A (Owz 2 OQwy))

by T'15 and PR
O[('wl D 'll)2)/\(‘ll)2 o wl)] = [(O wy D O‘W2) A(Owg D Ow,)]

by T13 and PR
O(wl = ‘wg) = (Owl = O‘w:)

by ER and PR

= DOw

Ow D (w>Ow) by PT
O0Ow > Ow> Ow) by OO
O(w > Ow) > OO(w > Ow) by C7
O0(w 2> Ow) > O(w > Ow) by C8 and OO
O(w > Ow) > (Ow> OD0w) by C5
OOw 2 (Ow>O00w) . by 2, 3, 4, 5, and PR
OOw > Ow o by C3
OOCw > O0w by 6,7, and PR

Gasih o
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9.

10.
11.
12.
13.

14.

F

T TTTT

O0Ow 2> O00Ow
O0Ow > A0 Ow
O0w > Ow
000w > OO0w
O0Ow 2 OOw

O0Ow = O0w

Ti8.  OQOw=<00uw

proof:

1.
2.
3.

+
=
-

O0~w = O00~w
~Q0w = ~QC0w
OCw = 00w

T19. F Ow = (wAODw)

proof:
. + Ow D w
2. + Ow > O0Ow
3. Fr Ow > (wAOOw)
4. + O0Ow > O(wAOOw)
5 F (wAOOw) O O(wAODw)
6. + (wAODOw) > OwAOOw)
7. F OwAOOw) > (OwADOODw)
8. F OwAODOw) D Ow
9. F (wAODOw) D Ow
10. F Ow = (wAODw)
T20. + Ow = (w V OOw)
proof:
. b O~w = (~w A OO~w)
2. F ~%Ow = ~w vV ~00~w)
3. F ~O%w=~wyvV OOuw)
4. F Ow = (w Vv OOw)

T21. F (w A O~w) D O(w A O~uw).

by C7 and OO
by CI

by C3 and OO
by OO

by 10, 12, and PR

by 8, 13, and PR

by T17
by C1, C4, and ER
by PR

by C3
by C7
by 1, 2, and PR

by OO
by PR
by Cl1
by T6
by PR

by 6, 8, and PR

by 3, 9, and PR

by T19

by C1 and PR

by C4, C1, and ER
by PR

This is the dual of the “computational induction” axiom C8. It states that if w is true now
and is false in the future, then there exists some instant such that w is true at that instant and
false at the next.

proof:
1.

[

O(w 2 Ow) 2 (w> Ouw)

by C8
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- ' 2. F ~(w>Dw) > ~Ow>Ow) "~ by PR
- : 3. F (wA~DOw)Dd OwA~Ouw) by T4 and ER
. 4. F (w A O~w) O O(w A O~w) by T4, C4, and ER

“until” theorems

T22. + (Ow,)U(sz) = O('MMUU)Q)
Denoting
w:: (O w)U(O wz)
w; H O(W1U’UI2)

we have to show F wr = w;. We will use the Next to Present derived rule (NP).

proof:
1.+ w: = Ow; V (Owy A Ow:) by C9
2. + Ofwiliwe) = O(wz V (w3 A O(w Uws))) by C9 and OO
3. F w; = OwaV(Ow AOuwy) by 2, T13, T'14, and PR
4. F (Ow;=Ow;) D (w, =uwy) by 1, 3 and PR
5. + Ows O (w; Aws) by 1, 3 and PR
6. F OOw; D O('wr/\'w;) by © ¢
7. F (Ow,UOwy) O O Owy by C10
8. F w, D O(w; Aws) by 6, 7 and PR
9. F wilwy D Ows by C10
10. + O(wlwy) O OOw, hy 9, OO, and 718
11. F w; o) O(w: /\w;) by 6, 10, and PR
12. F w, = w, | by 4, 8, 11 and NP

7T23. + (w;/\wg)llwg = [(w,Uwg) A (w-;Uwg)]

Denoting

w: H (wl AW2)UW3

wy:  (wylUws) A (wsllws)




we have to show w: = w;. We will again use the derived rule NP.

proof:

R

10.
11.
12.

13.

14.

by C9
by C9
by C9

by 2, 3, and PR

Fow o= wy V ((wy Aw2) A O'w:)
F owlwy = wz V (wl /\O(uuUws))
F owolwy = w3 V (ngO(wglIwg))
F o (wilws) A (wallws) = w3 V (w1 Awa) A O(wiliwz) A O(waliws))
+ w; = w3 V ((w1 Awa) A Ow;)

F (Ow:EOw;) o] (erw;)

F wy O ('w:/\w;)

F Cw; D O(w: A w;)

F o(wi Awg)llwsy D QOws

- 'w: p) /,\(w: /\w;)

F willwsy O QCw;

F (wUws) A (wallws) O Ows
)— w; D O(wr A w;)

*
Fow = wy

*

4. QUANTIFIERS

by 4, T13, and PR
by 1, 5, and PR
by 1, 5, and PR
by © O

by C10

by 7, 9, and PR
by C10

by PR

by 8, 12, and PR

by 6, 10, 13, and NP

Since we intend to use terms and predicates in our reasoning we have to extend our system to
admit individual variables, Lcrms and quantification. Letl us consider additional axioms involving
quantifiers and their interaction with modalities.

Axioms:

DI. + ~zw = V. ~w

D2. + (Vz.w(z)) DO w(t)
where ¢ is any term globally free for z in w

D3. + (Vz.Ow) D> (OVz.w)

DA. + (Vz.0w) D> (OVz.w)

20
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In these axioms z is any global individual variable. Axioms D1 and D2 are the usual predicate
calculus axioms: D1 defines 3 as the dual of V and D2 is the instantiation aziom. Axiom D3 is
known as the Barcan formula connecting the Lwo universal operators ¥ and 0. Axiom D4 is the
Barcan formula [or the O operator. The axioms state that since both operators have universal
characteristics they commute.

A term ¢ is said to be globally free for z in w if substitution of ¢ for all free occurrences of
T in w: {a) does not create new bound occurrences of (global) variables, and (b) does not create
new occurrences of local variables in the scope of a modal operator. A trivial case: if ¢ is  itself,
then ¢ is free for z. Condition (b) in this definition is essential. For, otherwise, we could derive the
formula '

(Vz.0(z < 9)) D Oy < v),

which is not valid for a local variable y.

An additional rule of inference is:

Inference rule:

R4, ¥ Insertion - VI

+ wy O we

F wy D Vz.wg
where z is not free in wy.

We have Lhe derived rule

Instantiation Rule — INST
. - w(z)

- w(t)

where ¢t is any term globally free for z in w.

proof:
: 1. + w(z) given
| 2. F Vz.u(z) by VI (taking wy to be true)
3. + (Vzw(z)) > w(t) by D2
1.+ w(l) by 2, 3, and MP

The following arc the duals of D2 and R4 for the cxistential quantificr 3:
21
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T24. + w(t) O Iz.w(z)

where t is any term globally free for z in w.

proof:
1.+ (Vz.~w(z)) D ~uw(t) by D2
2. F (~3z.w(z)) D> ~w(t) by D1 and PR
3.k w(t) O Jr.w(z) by PR

Note that we need here again the additional condition (b) that the substitution of ¢ for z in w
does not create new occurrences of local variables in the scope of a modal operator. For otherwise,
we could deducc rom 7'24

O(y <) > 3u.0(y < u),

which is not valid for a local variable y.

3 Insertion - 31

Fwy O we

F Jzwy, D we

where z is not frce in wa.

Rule (b) then follows by propositional reasoning.

22

proof:
1. F w D we given
2. F ~wg DO ~uw by PR
3. F ~wy; D Vz.~uw by VI (124)
4. F+ ~wg D ~3Jz.uy by D1 and PR
5. F Jz.wy D we by PR
W Rules
F wy D we Fw = wy
(a) (b)
F Vz.w, D Vz.we + Vz.ow, = Vz.wy
proof of (a): .
I. + Vzw; D wy by D2
2. F w; D wy given
3. F Vzawy D we by PR
4. + Vzw, D Vz.wg by VI




33 Rules :

Fwy D wg Fow = wg
(a) (b)
+ z.w; D Iz.we b Jz.w; = Jz.we
proof of (a):

1. F wy D wy given
2. F (~wg) O (~wy) , by PR
3. b (Vz.~wp) D (Vz.~w,) by W
4. F (~3z.we) O (~3Iz.wy) by D1 and PR
5. + 3z.w; D Jz.we by PR

Rule (b) then follows by propositional reasoning.

The last two rules are, of course, classical rules of Lhe predicate calculus, and are brought here
only for Lhe sake of completeness and later reference.

We extend now the Equivalence Rule (IFR), given above for propesitional formulas, to handle
predicate formulas as well.

Equivalence Rule - ER

Let w’ be the result of replacing an occurrence of a subformnula vy
in w by vg. Then

Il

F v v

proof:

The proofl is by induction on the structure of w. The cases where w is wy or of form ~u,
uy Vug, uy D ug, Ou, Ou, Ou and u lug, are treated as before.

Case: wis of form Yz.u.  We assnme that if + v; = vy, then b » == »’ Then by the ¥W-rule
- Vzou = Vz.a/, de. - w=w'.

The case where w is of form 3Jz.u, is proved similarly by the 33-rule. @

Deduction Rule - DIED
w ' w
F(Ow) D ws

where the VI rule (Rule R4) is never applied to a free variable of
wi in the derivation of wy + wq.
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That is, if under the assumption w; we can derive w3, where rule R4 is never applied to a free
variable of wy, then there exists a proof establishing + (Ow;) O wa. We clearly must also be
careful in using any theorem or derived rule such that the VI rule was used in its proof.

The additional O operator in the conclusion is obviously necessary since in general wy + wg
does not imply + w; D we. For example, obviously w + Ow is true (an immediate application of
Rule R3: F w by assumption and therefore F Ow by O 17); but - w D Ow is false.

proof:

The proof of the modal Deduction Rule follows the same arguments used in the proof of the
classical Deduction Rule of Predicate Calculus. We replace each line F u; in the proof of wy F we
by the line F Ow, D u;, and show that this transformation preserves soundness. That is

given show
F Uy F (Ow;) D uy
F s F (Owp) D ug
F ug F (D'wl) Dy
F U F(Owy) D um
1.e. F wy ie. F (Qwy) D we

where u; is cither the assumption wy, an axiom, or derived from previous u;'s by some rule of
inference.

The proof is by a complete induclion on . We assume thal for all k¥ < %, F (Ow;) D uk, and
prove that - (OQw,) D u,.

Case: u; is an axiom.

1. b+ ug axiom

2. + (Owy)Du by PR
Note that F w’ implies + w D w’ for any w, by propositional reasoning.
Case: u; is w,.

. F (Owy) o wy by C3
Case: u; is obtained by Rule I£1, i.e., u; is an instance of a taulology.

1. + u; by PT

2. F (Owy)Du; by PR
Case: u, is obtained by Rule R2 (using previous F uy and b ux D uy).

1. + (Ow)Du - | induction hypothesis
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F (Owi) D (ur D uy) induction hypothesis
F (Qwy) Dy by 1, 2, and PR

Case: u; is obtained by Rule R3 (using previous F uy), t.e., u; is Ouy.

1. + (Dwy)Dux induction hypothesis
2. + (O0Ow) D 0uy A by OO
3. + (Ow) D> (O0Ow) by T'12
4. F (Ow)D Ou by 2, 3, and PR

Case: u; is obtained by Rule R4 (using previous b u D v, t.e. ux, to get F u D Vz.9, i.e. u;, where
z is not free in u).

By our deduction rule assumption, we know also that z is not free in w,.

1.  (Ow) D (udv) . induction hypothesis
2. F ((Owy)Aw) D v by PR
3. F ((Owi)Au) D Vo by I24

(since z is not free in u or w,)
4. + (Ow;) D (x> Vzw) by PR 1

A different approach to coping with the application of O insertion rule (Rule £3) is to forbid
it altogether. We then get the following restricted deduction rule:

Restricted Deduction Rule — RDED
wy + wg

F wi D wy
Provided O7 (Rule R3) is never applied and VI (Rule R4) is ncver
appliced to a [ree variable of w; in the derivation of w; F waq.

Here, we are not allowed te use rule O 17 or any theorem or derived ruie that [17 was used in its
proof.

The proof of RDED follows exactly that of DED except that the case in which Rule R3 is
applied does not arise.

Predicate Theorems

T25. + (~Vz.w) = (3z. ~w)
proof:

1. F (~~w)=w ‘ by T
2. + (Ve.~~w) = Vz.w by W
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3. F (~3z.~w) = Vzw
1. + ~Vew = Jz.~w

T26. + V. (w; Awz) = (Vz.owy A Vz.wg)

proof:
1. + Vzow, D w,
2. F Vziws D we
3. F (Vz.wy A Vz.wz) O (w1 A we)
4. + (Vz.w, A Vz.wz) D Vr(wy A wp)
5. F {wiAwg) D w,
6. + Vz.(w, Awz) D Vz.w,
7. + (11)1 /\W2) D wa
8. F Vr(w; Awg) D Vzaw,
9. F Vz.(w, Awsy) D (Vz.w; A Vz.wy)

10. + Vz(w, Awg) = (V. A Vz.wg)

T27. + 3z.(w; Vwyz) = (3z.w, V Iz.wg)
proof:

Ve (~w; A ~wz) = (Vz. ~w; A Vz.~ wy)
Vz. ~(w; V wg) = (V2. ~wy AVz. ~ wy)
~3z.(w, V wp) = (~Jz.w; A ~3Iz.w2)
Iz.(wy V wp) = (Jz.wy V Fz.we)

o s
TTTT

T28. F (Vz.Ow) = (OVz.w)
proof:

(Vzw) D w

(OVz.w) D OQw
(OVz.w) O (Vz.Ow)
(V2.0w) > (OVz.w)
(V. Ow) = (OVe.w)

S ol S DD e
TTTTT

alternative proof of + (OVz.w) O (Vz.Ow)

Vz.w
F ow

F Dw

F Vz.Ow

T

.:-ww:—

Thus, Yz.w + Vz.Ow and by the deduction rule

5. + (OVz.w) D (Vz.0Ow)

by D1 and PR
by PR

by D2
by D2
by 1, 2, and PR
by VI

by PT
by WV
by PT
by W
by 6, 8, and PR

by 4, 9, and PR

by 726
by ER
by D1 and PR
by PR

by D2

by OO

by VI

by D3

by 3, 4, and 'R}

assumption

by D2 and MP
by Q1

by VI




T29. + (32.0w) = (O 3z.w)

proof:
1. + (Vz.O~w) = (OVz. ~w) by 728
2. + (Vz.~Ow) = (O~3z.w) by C1, D1, and £iR (twice)
3. F (~3z.0w) = (~CIz.w) by C1, D1 and PR
4. F (3z.0Ow) = (¢ IJz.w) by PR

T30. + (OVzw) = (Vz.Ow)

proof:
1. + (Vz.Ow) D (OVz.w) by D4
2. + Vzow D w by D2
3. + (OVzw) > Ow by OO
4. + (OVzw) D (Vz.Ow) by VI
5. + (Vz.Ow) = (OVz.w) by 1, 4, and PR

T3l. r (O3zw) = (I2.0w)

proof:
1. + (Vz2.0~w) = (OVz. ~w) by T30
2. F (Vz.~Ow) = (O~3z.w) by C4, D1, and ER
3. + (~37z.0w) = (~O03z.w) by C4, D1, and PR
4. + (32.0w) = (OIz.w) by PR

Theorem 728 implies the commutativity of ¥ with O: Both have a universal character, with one
quanlifying over individuals and the other quantifying over states. Similarly, Theorem 7°29 implies
the commutativity of 3 with ©. The last two thcorems (730 and T'31) imply the commutativity
of ¥V and 3 with O.

5. EQUALITY

Tquality is handled by the following axioms:

Axioms:

El. + t=t for any term ¢

£2. v (tl =t} D [w(t.,tl) = ‘w(tl,tg)l
and ¢; is any term globally free for ¢, in w.

Axiom [t states the reflexivity of equality. Axiom [£2 states the substitutivity properly of
equality. We usc w(ty,2) to indicate that {3 replaces some of the occurrences of ¢y in w.
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Recall that a term ¢y is said to be globally free for t; in w if substitution of ¢5 for all free
occurrences of ¢y in w : (@) does not create new bound occurrences of (global) variables, and (b)
does not creale new occurrences of local variables in the scope of a modal operator.

L Note that the classical axiom for substitutivity of equality E2
F (t=1¢t) D [w(tl,tl) = 'w(tl,tz)]

(where ¢y is free for ) in w) is not correct if w contains modal operators. We could take w(ty, £2)

- to be O(¢; = t2) and deduce from E2

| F (=1 3 [0 = 6) =06 = t))
" t.e.,

~ Fo(t=ts) D O(t: = ta),

which is not a valid statement (since ¢, = ¢; may contain local variables). But we have the following
theorem for arbitrary formulas.

g T32. Substitutivity of Equality
F Oty =t2) D [w(ty, t) = w(ty,ts)
- where t3 is free for ¢, in w.
proof:
j’ By induction on the structure of w.
Case: w conlains no modal operators. Then
. 1. (tl =t2) o] ['w(tl,h) = ’w(tl,tz)] by K2
: 2. D(t1 = tg) ) (t| = tg) by C3
: 3. F D(tl =1t3) D l'w(tlxtl) = w(tl,tg)] by MP
Case: w is of the form Ou.  Then
L.k O =t2) D [ulti, t1) = ulty,t2)) induction hypothesis
. 2.k Oty =ty) assumption :
3. F ufty, b)) = ulty,ta) by MP |
4. F Du(t,,t.) = D‘u(tl,tg) ‘ by 0a

Thus, O(t, = t2) + Ou(ty,ty) = Oult,ts)

1. *+ DD(“ = tg) D [Du(t,,tl) = Du(t.,tg)] by DED
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5. F D(t] =t2) ) IDU(t],h) = D‘u(t],tg)]

by T2 and PR

The cases in which w is of the form O u, Ou, Vz.u, and Jz.u are treated similarly, using the

© O-rule, the O O-rule, the VV-rule, and the 33-rule, respectively.

Case: w is of the form u U v.

D(tl -“—“tz) o] [u(tl,tl)
D(tl =t2) -] [’U(tl,t])
D(tl = t2)

ulty, £1) = u{t;, t2)
ot t1) = v(t1, ta)

u(tl; t2)]
v(ty, t2))

o

ST WD
TTTTTT

Thus, Ot = t2) F (u(ts, t) U v(t, t1)) = (ults, t2) U vty t2))

[u(ty, 81) U v(ts, 64)) = [u(ty,t2) U v(ty, ta))

induction hypothesis
induction hypothesis
assumption

by 1, 3, and MP

by 2, 3, and MP

by 4, 5, and ER

7. OO(t =t2) D [(u(t,t)) Uv(ts, t1)) = (ulty, t2) U v(t1, t2)))]

by DED

8. F D(tl = tg) D [(u(tl,tl) U v(tl,ti)) = (’u(tl,t'z) u ‘U(tl,tz))]

T33. Commutativily of Equality .

[ (tl = tz) pu) (t2 = tl)

proof:
1. F (tl = tg) 2 [(tl = tl) = (tz = tl)]
2. + =4
3. F (ti=t) D (a=1t)

T34. Transitivity of Equality

F o lti=1t2) A (k2 =t3)] D (L1 =t3)

by T2 and PR &

by £2
by FE1
by 1, 2, and PR

proof:
1. + (t] = tz) ] [(tl = t3) = (tg = t3)l by E2
2. F [(ti=1t:) A (2 =13)] D (t1 =1ts) by PR
T35. Term Equality
(@ F Oty =t) 2 (7(t1) = 7(ta)) for any term 7
() F (b =t2) o (7(t:)) = 7(t2)) where 7 does not contain the next operator.
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Here, 7(t2) is the result of replacing an occurrence of ¢; in 7 by £3.

proof of (a):
- Lk Ot =t) 2 [(r(t) =7(ta)) = (r(ta) = 7(ta))] by T'32
" 2. F 1(tg) = 7(t2) by El
3. F Oty =t3) D ((t1) = 7(t2)) by 1, 2, and PR

"; * proof of (b):
p Lk {=t2) D [(r(ts) = 7(ta)) = (r(ta) = 7(t2))] by E2 (no O in 7)
= 2. F 1(t) = 7(ta) by E1
g 3. F (ti=t2) D (r(t1) = 7(t2)) by 1, 2, and PR

6. FRAME AXIOMS AND RULES

The use of the next operator O applied to terms is governed by the axioms:

Axioms:

N1, F Of(l],...,t,\) = f(Otl,...,Ot,.)

for any function f and terms £y, ...,{,

N2. + Op(ty, ..., t,) = p(Oty, ..., 0tn)
for any predicate p and terms ¢y, ..., t,

N3. F O(h =t2) = (Otl =Ot2)

Axiom N3 is a speeial case of N2 where p is the cquality predicate.

These axicms arc consistent with the cvaluation rules that we gave +which stated that to
cvaluate an expression O £(¢y, ...t,), we can evaluate £(O¢ty, ... Ot,) regardless of whether £
is a term or a logical expression.

Recall that we split the sct of our symbols into two subscls: global and local symbols. The
logical consequence of this convention is the following frame axiom:

I’'A. Frame Aziom
2= Oz for every global variable z

We can therefore prove by induction on the structure of the term ¢ and the formula w the
following frame theorems:
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T36. VYor atermt and formula w

(@) +t=0t provided ¢ does nol contain local symbols

(b)) +w=0w provided w does not contain local symbols

() +w(Oyr,...,0uyn)=Ow(yr,...,un)
provided yy, ...,y arc all the local variables in w.

A derived frame rule that we will be using is

Frame Rule - FR

F w :)Owg

+ (wAw) D O(w-/\wz)

provided w doces not contain local symbols.

proof: 1
1. v w D 0w by T36 )
2. F w D Ows given |
3. F (wAw) D (OwA Ow) by 1, 2, and PR '
4. + (OwAQwy) O O(wA ws) by 7'10
5. F (wAw) 3 O(wAw) by 3, 4, and PR

7. DOMAIN PART ‘l

The next parl of the system contains domain axioms that specify the necessary properties
of the domain of interest. Thus, to recason about programs manipulaling natural numbers, we
need the set of ’cano Axioms, and to rcason about trees we need a set of axioms giving the basic

1

|

{

|

properties of trces and the basic operalions defined on them. .
.

i

An cssential axiom schema for many domains is the induction aziom schema. This (and all i
other schemas) should be formulated to admit modal instances as subformulas. Thus the induction
principle for natural numbers can be stated as follows:

Induction Aziom

F [R(0) A Vn(R(n) > R(n+1))) > R(k)
for any statcment I,

Onc instance of this principle, which will be used later, is obtained by taking R(n) to be

a(@Q(n) o O ¥):
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Induction Theorem

F {O(Q(0) > O )
A Va[D(Q(n) 5 O9) 2 O(Q(n+1) > O¥)]}
> D(Q(k) > Oy).

Similar induction theorems exist for other domains and depend on well-founded orderings existing

in those domains.

Using this induclion theorem we can derive the following uselul induction rule:

Induction Rule - IN D
F Q0)> Oy
F Qn+1)3 (9 v OQ(n)
F Q(k)D Oy

IND is useful for proving convergence of a loop: Show that Q(0) guarantees &9 and that for
each n, either Q(n + 1) implies Q(n) across the loop or it alrecady establishes ¢ 9 and no further
execution is necessary. Then Q(k) ensures that the loop is executed at most k times and that O %

is established on the last iteration or earlier.
proof:

1. F Q) > oy

given
2.+ 0O(QM) > ¢9) by OI
3. F Qn+1) > (O¢ v OQ(n) given
4. + OQr) 2 0%) > (¢Q(n) D O9) by T5, T3 and PR
5. F [(©Q(n) 2 OY)A(OY VvV OQ(n)] D O by PT
6. F [Qn+1) AO(Qn) 2 Oy) > O by 3, 4, 5 and PR
7. F O(Q(n) > O9) > (Qn+1) > O9) by PR
8. F O0O(Q(M) 2 O¢) > O(Qr+1) > O9) by OO
9. + O(Qr) 2 O9) > OQn+1) > O9) by T2 and PR
10. + Va[O(Q(r) > O9¢) > O(Qn+1) 2 OY) by VI
1. F D(Q(k) D 0¢) : by 2, 10, and Induction Theorem

122+ Qk) D O
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8. PROGRAM PART

Our proof system must be augmented by additional axioms that reflect the structure of the
program under consideration. These additional axioms constrain the state sequences to be exactly
the set of execution sequences of the program under study. This relcases us from the need to express
program text syntactically in the system; all necessary informalion is caplured by constraints on
the accessibility relation that are expressed by the additional axioms.

For simplicity, we assume that the program is represented by a directed graph whose nodes

are the program locations or labels and whose edges represent transitions between the labels. A
transition is an instruction of the general form

@ c(y) - [7:= J(7)] @

Here, ¢(7) is a condition (possibly the trivial condition true) under which the tLransilion replacing
7 by f(y) should be taken, where ¥ = (y1, ... ,¥n) is the vector of program variables.

We assume that the programs are sequential and deterministic; in other words, all the condi-
tions ¢y, ...,cx on transitions departing (rom any node are ezhaustive, t.e., sz‘ ci(y) = true,
and mutually ezclusive. In order to uniformly satisfy this requirement we add “true — []” self-
transitions o all the exit nodes,

A first generie axiom states that in every state s, atf is true for exactly onc label €. Let L
denote the sct of all labels in the program; we have

Location Aziom - LA

oY atl=1.

el

We use here the abbreviation Y p; =1 o0rp; + -+ +p, = 1 to mean that ezactly one of the p;’s
is true; p; = 1 if p; is true and p; = 0 if p; is false.

The role of the other axiomns, called the transition azioms, is to introduce our knowledge about
the program into the system. Since the system does nol provide direct tools for speaking about
programs (such as mentioning program text in [{oare’s formalism or Dynamic Logic), the transition
axioms represent the program by characierizing the possible state transitions under the excculion
of the program. For any transition:

@ (7)) - IZ = f(7)] @

we gencrate a transition axiom F,. This axiom corresponds to a “forward” propagation (symbolic
ezecution) across the lransition a:
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Forward transition aziom

Fo: F [atl A () A g=1a] DO Olattl A y= [(u)),

where @ are auxiliary global variables,

This axiom stales: If at any slale, execution is at ¢, ¢(g) holds, and the current values of § are 4,
then at the next state we will be at ¢ with § = [f(7).

A different approach that suggests an allernative axiom schema is obtained by “backward”
substitution (derivatlion of the weakest precondition)

Backward transition aziom

Ba: v [atl A c(7) A P(J(F)] D Olatt! A P(7)),

where P is any state predicate (i.e., without modalities).

Here l’(j(y)) denotes the substitulion of f(¥) lor all free occurrences of 7 in P(y). This form of the
axiom expresses Lhe cffect of the transition on an arbitrary “state” predicate P de., a predicale
P that does not contain any modal operators. It says that if at€ A c(7) and P(f(g)) hold, then we
are guaranteed to reach £ with l’(y) on the next step.

The predicate P may not contain modalities. As a counterexample, consider the program
scgment

- true — |y := 1 R
@— o{ ] @&) true — [y :== 0]

with
Ply): Oy =1).
The appropriate instance of the backward axiom for a is
Bo: v [atl A true A O(1 =1)] D> Olatt A Oy = 1)},

which clearly does nol coricelly reflect vhe compuiabion of vhe prograu.
B

Fo and B, are equivalent and can be derived from each other. That is

I'or every transition a:

B3, holds for every I if and only il F, holds

proof: D, for every P = F,.

.+ [atl A e() A P(f(3))] D Olatt A P(7) by H,, given
34
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2.

3.

4.

proof: F,

1.

N e g e w N

9.

10.
11.
12,
13.

14.

15.
18.

T T T T T T 7T

T T T 7T

F o {ate A e(@) A f(7) = J(@)] > Olatt’ A 7= f(u)]

taking P(g) to be § = f(u),
where T are auxiliary global variables

F latt Ac@ Ay=1] D [atl A c(B) A [(B) = ST

by T35(b) and PR

b [ate A c(d) AF=1u] DO Olatt! A 7= f(u)]

by 2,3 and PR

which is the desired F,. §

= B, for every P.

Let P be an arbitrary state predicate and @ auxiliary global variables not in . Then

[atl A c() A g=1u] D> Olatl! A 5= [f(T)] F,, given
Olatt A 5= f(w) > [Oatt A O(F = f(a)) by T'13
O(F = f(w) > ((Oy) = f(O%)) by N3 and N1
=01 by FA, since % is global
(@) = 1(07) by T'35(b)
O(F = f(w) > ((O7)= f(m) by 3, 5, K2, and PR

[atf A c(¥) A T=1u] D [Oat A (O7)= f(z)]
by 1, 2, 6, and PR

=z A P(f(3)] > P(f(a) by E2 (no modal operators in /?) and I’R

F o [ate A o) A T=T A P(I@)

> [Oatl A (OF) = f(7) A P(f(w)) by 7, 8, and PR
(07) = f(@) > (P(O7) = P(f(w)) by £2 and PR
P(O7) = O P(y) by T36(c)
(OF)= f(@) A P(f(m) > OP() by 10, 11, and PR

(6tt A em) AT=T A P(/()] o [Oatl A OP()
by 9, 12, and PIR

fatt A (@ AT =7 A P(f(F)) 2 [Oatl A OP(p)

by INST
[att A (@) A P(JH)] D [Oatt A OPF) by £ and PR
l[ate A 7)) A P(J(7))] 2 Olate A P(z)] by T13 and PR

which is the desired 13,. 8§




We often use a weaker form of the transition axioms:

Filo: b [atl Ac@ Ag=1] O Olatl! A 3= f(u)

and

B,: F [ate Ac®) A P(f(@)] > Olate A P(7)

obtained from Fa. and I, respectively, by replacing O with ©. The weaker forms follow by :
Til, te. QuwDd Ow. i

9. THE INVARIANCE PRINCIPLE

X iw"‘" et riudik B S
et AR
= P

ST TN
. . T

We now present a general method for proving invariance propertics of programs, t.e., properties

E‘ that hold continuously throughout the excculion. Such properties are cxpressible by formulas of :
' form
: F (atto A ¢(z)] > OQ() i
3 |
? . That is, @(7) is invariantly true for cvery computation starting at £o with input T satisfying the i
% precondition ¢(%). !
»

L Let £ be any label in the program under consideralion and let its outgoing transitions be of

‘ the form

(4 i
4

S

er(¥) — [7:= N(7)]
ay @

® i

3 ) == My

ci(y) = true, and

=1

‘ : Reeall that we assume that ¢((7), . .., ck(7) are exhaustive, ie. ¥

mutually exclusive. We denote by L the sct of all labels in . We have
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proof:

Y T WG hy TV T T oz > -
T T T P T

R A A e A D Sl
. "

L.

9.

10.
11.
12.

13.

Invariance Principle:

Le

I

th

t Q(¥) be a state predicate (with no modalities) and labels describ-
ing a property of program /” with input condition ¢(z).

(a) @ is Lruc initially, t.e.,
F [atlo A $(Z)] D Q(7)

(b) @ is maintained along any transition « in P, i.e.,
b olatl A ca(@) A Q@) 2 Q(fa),

en @ is invariantly true, i.e.,
F olatly A 6(Z)] D OQ®H).

+

(o

T

T

T

T

Consider an arbitrary label £ and an arbitrary transition oy, 1 < 7 < &, from £ to ;.

[att A ci(@) A Q@) > fatl A i) A /(@)
by (b) and PR
[at A ei(3) A Q7)) > Olatt: A Q)] by Ba,
[att A ci(7) A Q)] D Ofatl; A Q7)) by 1, 2 and PR
[ate A ei(7) A Q(F)] 2 OQ®W) by 713 and PR
Vizilatt A (5) A Q@] > 0Q() by PR
(taking the disjunction over all transitions from ¢)
att A Vi_i (@) A Q@) 2 OQ() by PR
V:le(:i(y) = true assumption
late A Q@] > 0O by PR
Veerlatt A QF)] o 0Q(w) by PR
(taking the disjunclion over all labels of 1?)
(Veer st A Q@) > OQ(3) by PR
Vieep atl = true by Location Axiom and PR
Q) > 0Qw) by 10, 11 and PR
Q) > DQ) by CI
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1. F [atlo A ¢()] D Q) by (a)
15. F [atly A ¢(z)] D OQ(m) by 13, 14 and PR

; ! 10. EXAMPLE: INTEGER EXPONENTIATION PROGRAM

Consider for example the following program I'F over the integers, which raises a real number
g | z), to an iuleger x4, t.e. 1,52, where 3 > 0. We assume that 09 = 1.

; Program [ (Integer Ezponentiation):

.
true — [(y1,y2, y3) := (21, 22, 1]
G L o )

)
b * ﬂ

]

. [y2 > 0 A odd(y2)] — [(ya,ys) == (y2 — 1, y1 - y3))]

1 v
b,

3 [y'l >0 A cven(yg)] — [(yl,y‘z) = (yl2y Yy 2)]

]

Let
¢: atly A 2320
PY: atly A y3 = x2,%2.

We would like to nse our proof evstem to establish the total corrnetness of nragram (17 with respect,
to ¢ and ¥; we will show

- ¢ D O

In the proof we ignore Lype consideralions such as real(zy) and integer(zs). (See [BUR], (MW]).

PROOF 1: Using Backward Transition Axioms

The backward Lransilion axiom schemata corresponding Lo this program (taking the weaker
form, with O rather than O) are:

":x' F [at’D A l’(ﬂ’?l,Ig,')) S O[ath A ”(?/lyi’lz;ys)]
38




By: F [atly A ya =0 A Ply,,yz2,93)] O Olatly A Plyi, 2,93

B : F [atly A yz >0 A odd(y2) A Plyy, v2 — 1, ¥1 - y3)]
D Ofatly A Ply1,y2.93)]

By: r [atlhy A g2 >0 A even(yz) A Plyi?, v2 + 2, u3)|
D Olatly A Plyy,y2,¥3)l-

We prove
(@) +¢2O3kQ(k7)
~ . () F (3k.Q(k,7) D O, or cquivalently F Q(k,7) D O,
3 where i
i .
- Q(n,7): atly A (0L y2 < n) A ya-n¥ =z,
. Here, 0 < yg < n is used to eslablish the termination, and y3 « ¥,¥? = z,;%2 is the invariant used
to establish the correctness.
E . Clearly, by rule ¢ C, parls (a) and (b) imply the desired result + ¢ 2> O 9. !
4
l"r proof of (a):
g 1. F 1.2, = z,*2 by domain {
: 2. F ¢ DO latlo A z22>20 A 1-21% = 1,%7] by PR
3. F fatlyg Aze>0A1-3%2 =g,%
¥ > Olatly Ay2 >0 A ya-n¥ =z, by B,
o where P is yo > 0 A y3-y,¥2 = z,72
4. F (y220) O (0<y2 L ¥2) by demain
5. F [atéy A ya >0 A yz-oy ¥ = 2,5 . !
D [atly A (0 < y2 < y2) A y3-y1¥? = 2,77 by 4 and F’i2 i
]
6. F [ally A ga =0 A y3-9¥? = ™) !
D> 3k[atly A (0 <y2 <k) A y3-3V? = 7™ by T'24 ;
|
7. + ¢ O O3kQk7) by 2,3, 6 and OQ g
?
b proof of (b): We use the induction rule IND: |
(6) FQ0O,7) > ¢ |
(b2) FQn+1,7) > [C¥VOQnT) |
_ FQkg) > Oy |
. 39 . :




proof of (by):
8 F [0 4 S0 Ay -nY*=2,7] D [g2=0 A y3 = 2,7
by dormain
9. + Q0,3 > (atll Ayr=0A y3 = 1'|”]
by PR
10. ~ [at(| Ay=0 Ay =11|12] D 0[0[(2 A ys = :L'|z’]
by B, where P is y3 = z,*
1. + Q0,5) O O by 9, 10 and I’R
proof of (b2):

case 1: y, = 0.

12 F [12=0Ays-n¥?=2"] 2 [y2=0 A y3 = 1,7
by domain

13. [(2(1L+ l,y) A Y2 ——‘0] D [at(’.l Ay=0A y3 = :::l”]
by PR

4.+ [atly A y2=0 A yz =z,™] D Olatly A y3 = z,*3}
by By, where P is y3 = z,**

15 F [Qn+1,7) Ay2=0] D Oy by 13, 14 and PR

case 2: y2 > 0 A odd(ys).

16. + [y2>0/\(0§y2§n+l)/\ya.ylw=zlzz]
D0<y2~1<n) A(y-ys) ¥ =z%
by domain
17. F [Qn+1,5) A y2 >0 A odd(ys)] D [atly A y2 > 0 A odd(yz)
AOLyz—1<n) A (31 y3) - 91¥! = 2,74
by PR

18. F [atly A y2 >0 Aodd(y) AN(0<yz~1<n) A (y1-y3) - n1v* ' = %7
D> Olatty A (0 <y2 <n) Ay 0¥ =z,
by I3, where Pis (0 < y2 < n) A y3-n¥? =z,

19. F [Qn+1,7) A yz>0 A odd(ys)] O OQ(n,%)
: by 17, 18, and PR

case 3. y2 > 0 A cven(yy).

20. F [even(yz) A (0 < y2 S+ 1) A y3-m¥? = 2,7
D{0<y2+2<n) Ay (m?)H? =z
by domain

10
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2t. F [Qn+1,9) Aya>0A even(yz)] O [atly A y2 >0
Aeven(yz) A (0 Sy2+2 < n)A y3- (1?22 =279
by PR

22. F [atéy A yz>0 A even(ya) A (0 < y2+2<1n) A yz-(12)2F% = z.%]
> Olatty A (0L y2 < n) A y3-¥? =117
by B}, where Pis (0 < y2 < n) A (y3-91¥? = ,*2)

23. F [@n+1,7) A y2>0 A even(yz)] O ©OQ(n,¥)
by 21, 22, and PR

To summarize, we showed

15. F [Qn+1,7) Ay2=0] D O case 1
19. + [Q(n+1,3) A y2a >0 A odd(yz)] 2 ©Q(n,¥) case 2
23. F [@n+1,7) A y2 >0 A even(yz)l O ©0Q(n,7) case 3

Then since

2. F Qn+1,9) D fyz=0V (y2 > 0A0dd(y2)) V (y2 > 0 A even(yz))]
by domain

it follows that

2. F Qn+1,7) D [Oy V OQ(n,7)
by 15, 19, 23, 24 and PR

This concludes the first proof of the total correetness of our example. [ |

PROOF 2: Using Forward Transition Axioms

For cowparison, lel us now prove the tolal correciness of prograwn 12 using the forward
transition axioms. The proof Lurns out to be longer than the previous onc using the backward
axioms.

The forward transition axiom schemas corresponding to the program (Laking again the weaker
form, with O rather than O) are:

Fl: atly O Olatly A §=(z1,22,1))

-

F'ﬁ: b olathh Aya=0AF=1a] > Olatls A =1

Fo: b [atly A y2a >0 A oddlyz) Ag=1] > Olatty A F=(ug,u1—1,uy u)
-

Fy:

latly A ya > 0 A even(uz) A 7= 1) 3 Olatly A 7= (u1?,u2 + 2,u3)]
4]




Again, lct

¢:
P

atlg A z2 > 0

atly A y3 = z,"%.

we would like to establish the lotal correctness of the program, t.e.,

F ¢ D O

As belore, we prove

(a)
(%)

where

',.

¢ > ©Ik.Qk,7)

F (3k.Q(k,7)) D O, orcquivalently, F Q(k,7) O O,

Qn,y): atly AN(0<y <n) Ayz-y¥?=m".

Parts (a) and (b) implics the desired result + ¢ O O 4 by rule O C. We proceed to prove (a)

and (b).
proof of (a):

1.

2.
3.

ie.,

T T 7T

atly D Olatly A ¥ =(z1,22,1)] . by F!,
[atlo A z9 2> 0] D O[Gtel ANYy= (I],xz,l) A xz9 2> 0] by ¥R
2 >0 D [1-2;%2 =2,%2 A (0 < z2 < 72)) by domain

[F=(zi,22,1) A Loz =22 A (0 < 22 < 30)
D [ys-m¥* =217 A (0 < ya < w2l by £2 and PR

[atll A 'II_:(IU:‘:?I l) A z2 Z 0,
O [atly A y3-m¥?* =212 A (0 < y2 < o)) by 3, 4, and PR

latty A yz-m1¥2 =z A (0 < y2 < w2
> 3Jklatly A yzs-m¥* =1z,% A (0 < yg < k)] by T24

[atty A z2 >0 D O3k[atty A y3 -m¥V?* =2z A (0 < y2 < k)
by 2,5, 6, © Q and PR

7. F ¢ > O3IKQk 7).

proof of (b): We use the induction rule IND:
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(1) + Q0,7 > ©O9

(b2) + Qn+1,3) 2 [O¥VOQ(nT)

F Qkg) O O%

In our proof we use the special consequence rule

proof of rule:

(1)
(2)
(3)
(1)
(5)
(6)
)

proof of (b1):
8.
9.

10.

11.
12..

13.
14,
15.

Consequence 3O rule - 30 Q

-
=
.

where u is not free in wy.

wy D Ju.wy
wg D Owy
w3 I wy

wy; D O wy

T TTTTTT

F 0<y:<0) 2 (yz2=0)

w; D Ju.wsg

wg O Ows
Juwg O Ju.Owsy
Juwg 2 O Juwg
w3 D wy

Ju.wg O wy

wy D Owy

given

given

by 33

by 729 and I'R

given

by 3/, since u not rec in wy

by (1), (4), (6}, and ©Q

by domain

F Q0,7) D (atly AF=F A y2=0 A y3 -1V = z,"?)

by K1 and PR

FoQ0,7) D Julatly AT=TA ug =0 A ug-u* = z,%

T

T

T 7T

T

[atly A ug =0 A F=1u] O Olatly A §= 1|

latly AT=1 A ug =0 A u3-u* = 2,5

by 724 and PR
by Iy, 52, and PR

3 Olatlg AT=T ANuz=0A ug-y,"? = 1'1”] by FR
[ue =0 A u3-u*2 =2,%] O uz =1z, by domain
(atlz Aug=0 A ug -y = 21”] . [atlz A uz= zl”] by PR

fatls A T=0 A ug =0 A ug-u ™ =z,

D [atls A ya = 2,%
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. 6. + Q0,7) > O by 10, 12, 15 and 3O Q

proof of (b2): We have to consider three cases: y2 = 0, y2 > 0 A odd(yz), and y2 > 0 A even(yz).
Lel us only prove the last case.

Case $: y3 > 0 A even(yz).

17 F [Qn+1,7) A y2>0A even(ys)) D [atly AY=7
L Ayz >0 A even(yz) A (0 <y2 <n+ 1) A ys-9¥? = 2,7
A by E1 and PR

! 18. F [Qm+1),7) A y2>0 A even(ys)] D Jufatly A7=1u
i Auz >0 A even(ug) A (0 <ug <n+1) A ug-u* =z,

f" by 124 and PR
i 19. F f{atly AT=7a A uz >0 A even(uz)]

3 D Olatty A 7= (ui? ua =2, uj)) by F%, I£2, and PR

a 20. F [atly A G=7u A uz >0 A even(ug) -

A0S u <n+1) A ug-u ¥ =z,
D Olatty A 7={(u1? uz +2, uz) A even(uz)

A0S u <n+1) A ug-u™ = ;%
g by FR
p 2.+ [even(uz) A (0 <uzg <n+1) A ug-uy® = z,%2|
g 3 [(0<uz+2<n)A uy-(u?)w+2 = z,%| by domain
b 22. F [atly A T=(u1? ug+2, uz) A even{uz) A (0 <uz < n+1t)

5 Aug-w*2 =z,%2] 2 [athh A (0< y2<n) A y3-91¥? = 2,7

: by 12 and PR
9 23. F [{Qn+1,9) A yz >0 A even(yz)] O ©Q(n,7)

g by 18, 20, 22, and 30 Q

To summarize, we can show

F R+ LI Ay=0]D Oy case |
F [Qn+1,%) A ya >0 A odd(y2)] O ©Q(n,7) case 2
F QM+ 1,7) A y2 > 0 A even(yz)] O ©Q(n,7) casc 3

Then since

F Qn+1,%) O [ya=0V (yg > 0 A odd(y,)) A (y2>0n even(yz))] by domain

it follows that

F Qn+1,7) D [O9 V OQ(n,7) by PR

This concludes the alternative proof of the total correctness of our example. [}
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